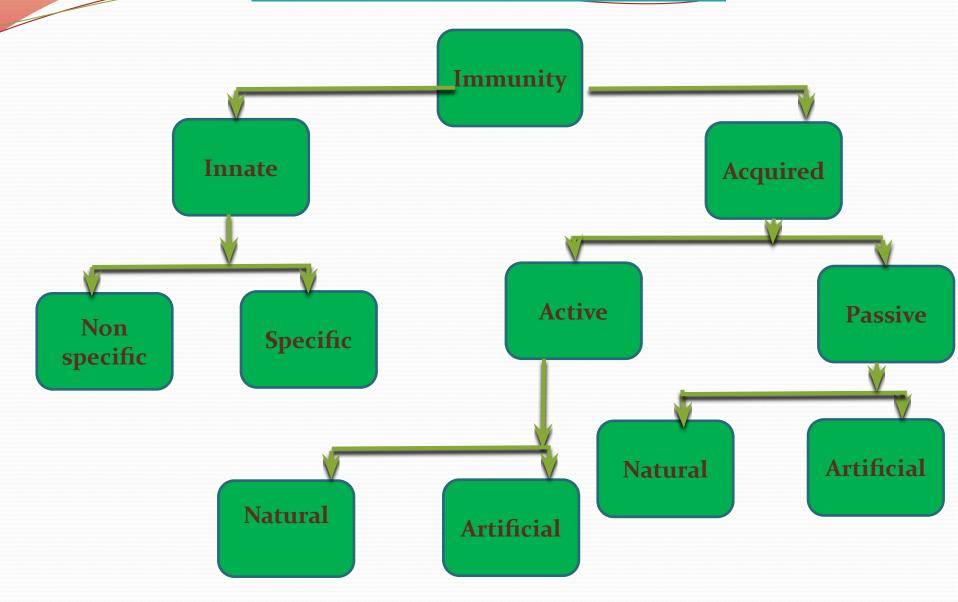

HOST RESPONSE - BASIC CONCEPTS

- Introduction
- Classification
- Innate immunity
- Acquired immunity
- Cell of the immune system
- Antigens
- Immunoglobulins
- Complement system
- Immune responses
- Cytokines
- References

- *Host* can be defined as "the organism from which a parasite obtains its nourishment"
- The immune response is the host reaction to infection/invasion
- Resistance exhibited by the host towards any injury caused by micro-organisms & their products

- The state of periodontal health or disease depends upon the interaction between the resident microbiota and the host response.
- Periodontal pathogens trigger both inflammatory reaction and host immune response.
- The immune system plays a key role in limiting the infections to the gingival crevice.
- It also orchestrates the alterations of the connective tissue in a complex remodeling process involving cycles of destruction and reconstruction

HOST DEFENCE


- Pathogen : an infectious agent that causes disease
- The body is under constant attack by microorganisms in the environment
- Infectious disease occurs when a microorganism succeeds in evading or overwhelming host defenses to establish a local site of infection and replication.
- For a pathogen to enter the body it must first overcome the epithelium and then the innate immune response and the adaptive immune response

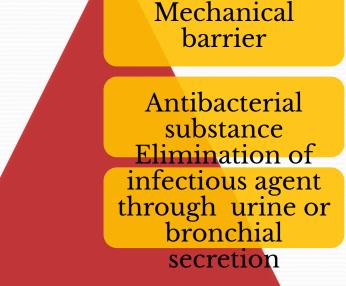
TYPES OF IMMUNITY

1. NATURAL / INNATE IMMUNITY

2. ACQUIRED / ADAPTIVE IMMUNITY

CLASSIFICATION

NATURAL OR INNATE (NON SPECIFIC) :


- First line of defense against invasion by microbes.
- Present from birth
- First time a pathogen is encountered
- Does not require prior exposure. System does not distinguish between different pathogens, always gives the same response.
 E.g: Foreign substance entering the skin
- Not modified significantly by repeated exposures.
 Eg: Phagocytosis by leukocytes, natural killer cells, tissue secretion and complement.

Innate immunity

Resistance by virtue of 'genetic' and 'constitutional' make up

a) Non specific

indicates a degree of resistance to infections in general Mechanical

• Specific

where resistance to a particular pathogen is

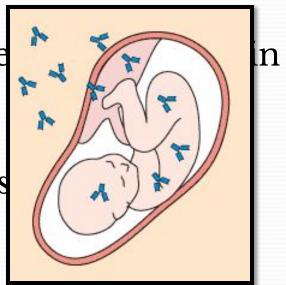
ACQUIRED OR ADAPTIVE IMMUNITY

- Specific
- Resistance that an individual acquires during his life time
- May be weak / absent on first exposure
 Increases with subsequent exposures to same specific pathogen
- Dual system of B and T Lymphocytes

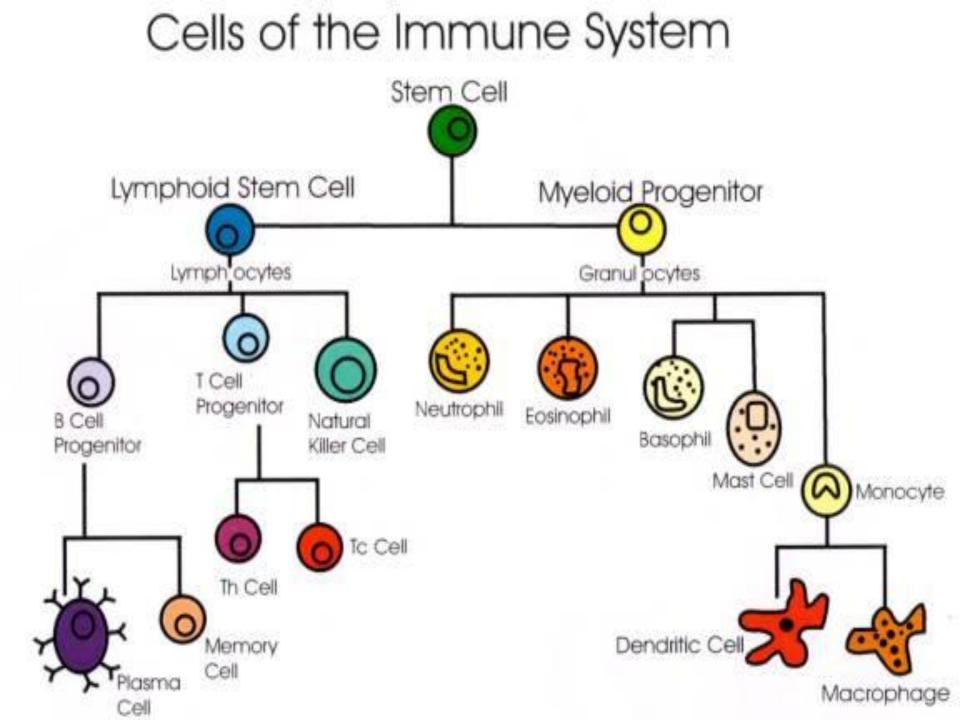
The resistance that an individual acquires during life.

Acquired immunity

A) Active immunity


Resistance develop by an individual as a result of antigenic stimulus .

also known as adaptive immunity


B) Passive immunity

The resistance transmitted passive READYMADE form

No antigenic stimulus Preformed antibodies are adminis

CELLS OF THE IMMUNE SYSTEM

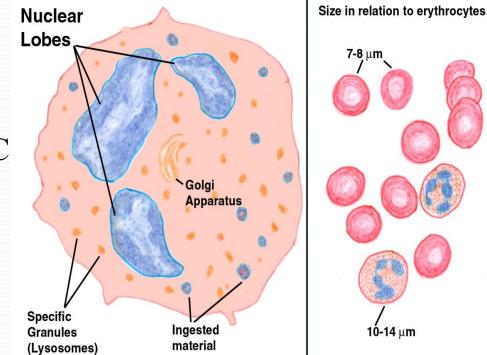
HOST DEFENSE SYSTEM

• FIRST LINE OF DEFENSE:

Barriers- Physical, Chemical & Genetic.

• SECOND LINE OF DEFENSE Inflammation & Phagocytosis

THIRD LINE OF DEFENSE
 Cell-mediated Long-term Immunity.


CELLS OF PHAGOCYTOSIS

NEUTROPHILS

MACROPHAGES

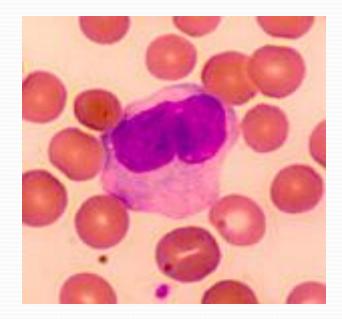
NEUTROPHILS (PMNs)

- Considered first line of defense.
- Produced in the bone marrow.
- 55-90 % of circulating WBC
- 4000- 8000 cells/mm³
- 6-12 hrs in circulation.
- Lifespan of 8 days in tissues

 Newly released cells have a horse-shoe nucleus

- Imp structural componentscytoplasmic granules:
 - azurophilic, specific, secretory granules
- Cells in inflm'tory lesions
- Chemically attracted to area by chemotaxis, then ingest/ phagocytose & kill the offending agents

MONOCYTES/ MACROPHAGES

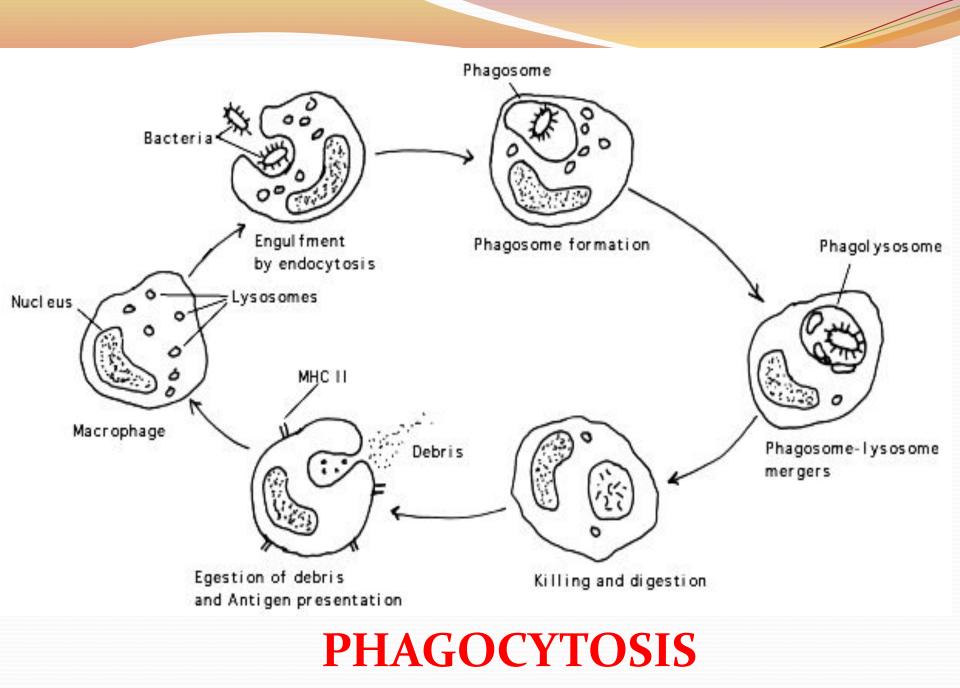

• Largest of all WBC's.

Produced in bone marrow.
3 - 7 % of total WBC's.

 Precursor of Macrophage-becomes macrophage within one day of circulation

Lifespan of 5-16 days

Normal Macrophages includes


- Connective tissue histiocytes
- Liver Kupffer's cells
- Lung alveolar macrophages
- Lymph nodes free and fixed macrophages
- Spleen splenic macrophages
- Bone marrow fixed macrophages
- Serous fluids pleural and peritoneal macrophages
- Skin histiocytes, Langerhans's cell

Biological Functions of Macrophages

- Most potent nonspecific killer cells (K cells)
- Toxic on dividing extracellular organisms
- Initiate T cell activation by processing and presenting antigen.
- Produce Prostaglandins PGE2, PGI2, LT's.
- SRS-A i.e., LTC4 + LTD4 + LTE4.
- Hyaluronidase (spreading factor), elastase, collagenase, and others.

PHAGOCYTOSIS

- Chemotaxis and Ingestion
- Phagolysosome Formation & Killing
- Destructive & Elimination systems

ANTIGEN PRESENTATION

- 1. Macrophages engulf the antigen (Ag)
- 2. Antigen processing (partial degradation of the Ag to expose the epitope)
- 3. RE-excretion on its surface + Appropriate MHC class
- 4. To present the Ag to T cell....stimulation of T cell
- If T4.....MHC class I
- If T8.....MHC class II

LYMPHOCYTES

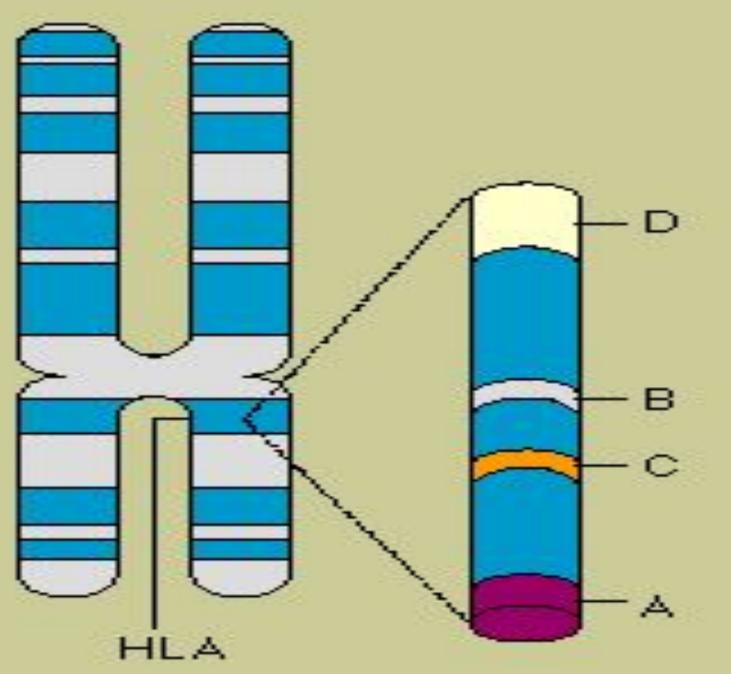
• T cells

- From thymus
- 80 % of circulating
- Iymphs in blood
- Long –lived
- TCR (T cell receptor)

• B cells

- Bursa of fabricius (in birds)
- 20 % of circulating
- Iymphs
- Ig receptor on its surface
- Natural killer cells
- Don't require prior sensitization
- Capable of killing tumor cells, virus infected & other cells

T CELLS


- Thelper cells
- T4 / TH
- CD4 + ve
- MHC II restricted

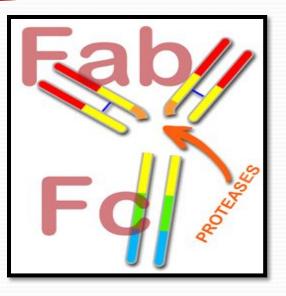
- *T suppressor / cytotoxic cells*T8
- CD8 + ve
- MHC I restricted

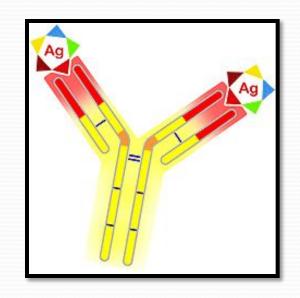
Major Histocompatibility Complex (MHC)

- Play role in intercellular recognition and in descrimination of self and nonself.
- T cells can recognize antigen only when it is combined with an MHC molecule
- The MHC is a collection of genes arrayed within a long continuous stretch of DNA on chromosome 6
- MHC is called HLA Complex in Humans

Chromosome 6

ANTIGEN


- An antigen has been defined as any substance which, when introduced parenterally into the body, stimulates the production of antibody with which it reacts specifically and in an observable manner
- The word **'specifically'** in the definition is important as specificity is the hallmark of all immunological reactions.
- An antigen introduced into the body reacts only with those particular immunocytes (B or T lymphocytes) which carry the specific marker for that antigen & which produce an antibody or cell complementary to that antigen

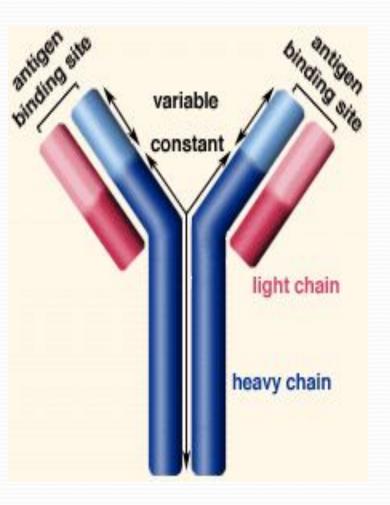

ANTIBODY

- Antibodies are globulin proteins (immunoglobulin's) that react specifically with the antigen that stimulated their production
- Found in blood, tissue fluids and secretions and are the effectors of humoral immunity.
- They are highly specific and sensitive
- The host responds to oral bacteria and their products by plasma cell production of immunoglobulins or antibodies
- All classes and subsets of immunoglobulins have similar structural organizations.

IMMUNOGLOBULIN STRUCTURE

- Each molecule of immunoglobulin is split by papain into three parts ,one Fc and two Fab pieces
 - Fab contains antigen binding site.
 - Fc is the region that determine biological
 - properties of the Ig.

 All the immunoglobulin constant region domains (C) maintain a similar basic structure.

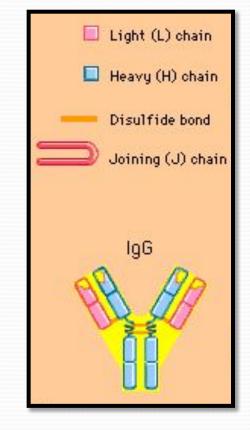

•The variable region domains (V) have a slightly different structure.

•Fab is the antigen binding region of the variable region.


•The polypeptide strand connecting the V and C domains is called the hinge .

•The Fc fragment bears the effector functions of the immunoglobulin molecule.

•Every antibody molecule has a variable region which, allows it to react highly specifically with a particular antigen

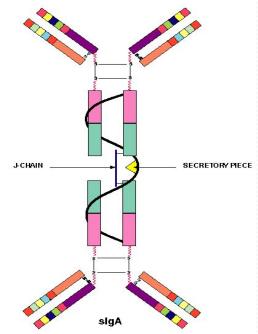

Ig are glycoproteins, each molecule Ig are glycoproteins, energy pairs of polypeptide chains of differe Heavy chainlarger

Hinge

• The L chain is attached to the H chain by a disulphide bonds • The H chains are structurally and antigenically distinct for each class and designated letter corresponding to the Ig class IgG gamma IgA Alpha IgMmu CH₃ region CH₃ Disulfide IgDdelta bonds CH4 IgE...epsilon

- Most abundant of the immunoglobulinsn in serum -80%
- 154 kd mol wt
- Longest serum half-life of 23days
- Consists of one basic structural unit, i.e. Y-shaped molecule having light chains and Gamma heavy chains.
- 2 antigen binding sites
- Produced in response to a wide variety of antigens, including bacteria, viruses and RBC and WBC
- Four subclasses. IgG1, IgG2, IgG3 and IgG4

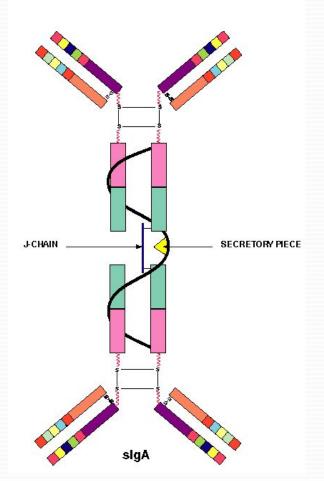
- Through its *ability to cross the placenta*, maternal IgG provides the <u>major line of defense</u> against infection for the first few weeks of a baby's life.
- It is the predominant antibody produced in the secondary response.


• Functions:

- Acts as opsonin: Coats organisms to enhance phagocytosis by neutrophils and macrophages
- Present on cell surface of B cell
- Fixes complement
- Stimulates chemotaxis

- Second most abundant ...10-13% of serum Ig
- Serum half life 6-8 days
- 160 kd mol wt
- IgA occur in two form

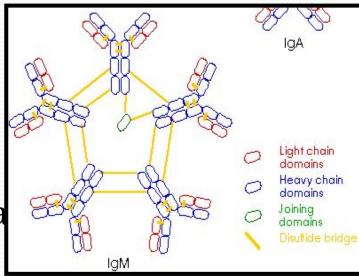
 Serum IgA and Secretory IgA
 a single basic structural unit or as or three basic units joined togeth
- The dimeric IgA molecule.
 - 1 H-chain,
 - 2 L-chain,
 - 3 J-chain,
 - 4 secretory component
- 2 Subclasses IgAl and IgA2



The IgA present in secretions exists as two basic units (a dimer) attached to another molecule know as **secretory component**.

 Found in <u>saliva, tears,</u> <u>colostrum and in nasal,</u> <u>bronchial and intestinal</u> <u>secretions</u>

 Principal site of action is secretions ; promotes release

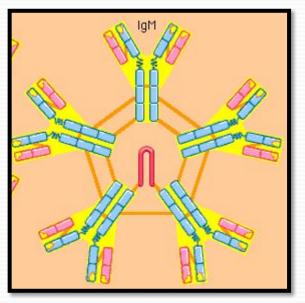

- Plays an important role in protection against respiratory, urinary tract and bowel infections
 Confer important specific local immunity
 - IgA does not cross the placenta

• Functions:

...IgA

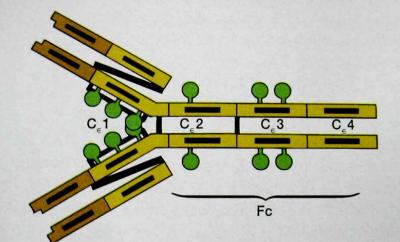
- Aggregated IgA can activate complement via the alternative pathway.

- Largest of all the antibody molecules
- Structure consists of five of the basic units (pentamer) joined together by a structure known a J-chain.



- Accounts for about 5-10% of the immunoglobulin pool.
- Restricted almost entirely to the intravascular space due to its

lamon aira


First antibody to be produced and is of greatest importance in the first few days of a *primary immune response* to an infecting organism.

- Does not cross the placenta.
- Functions:
- IgM is mot effeicient Ig in *activating complement*
- IgM is 500-1000 times more effective than IgG in opsonisation ,100 times more effective in bactericidal action and about 20

IgE

- 190 kd mol wt
- 2 antigen binding sites
- < 1% -total Immunoglobulin</p>
- Serum half-life 2-3 days

• Functions:

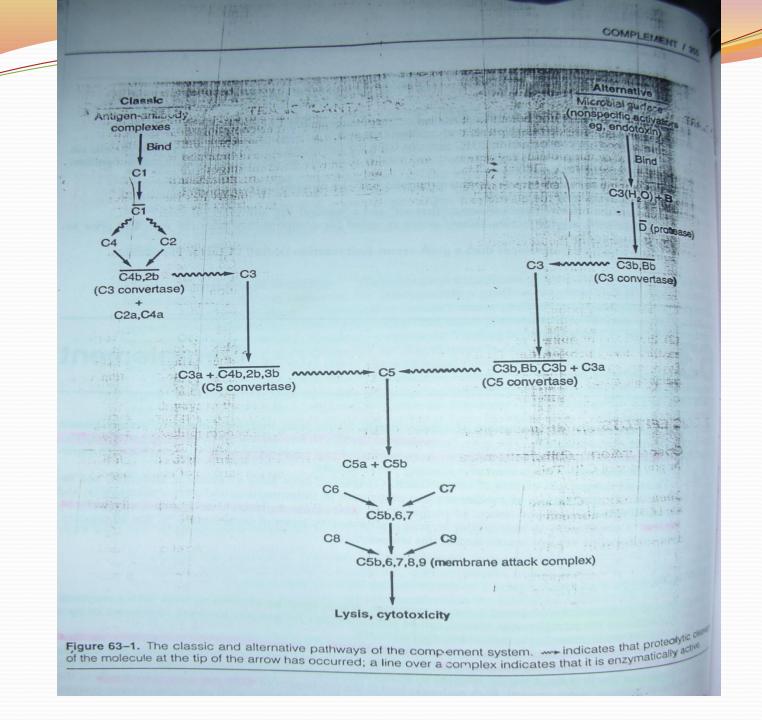
- Mediates immediate (anaphylactic) hypersensitivity
- It participates in host defence against certain parasites Eg: helminths
- Fc region binds strongly to a receptor on mast cells and basophils and, when antigen is bound it causes the basophil (or mast cell) to release histamines and heparin from these cells, resulting in allergic symptoms.

- Clinical effects of IgE mediated reactions include increased vascular permeability, skin rashes, respiratory tract constriction (wheezing), and increased secretions from epithelium (watery eyes, running nose).
- IgE does not fix complement and does not cross the placenta.

- Accounts for less than 1% of the total immunoglobulin pool.
- This is primarily a cell membrane immunoglobulin found on the surface of unstimulated B lymphocytes. Functions as an antigen receptor.
- Structure is similar to IgG
- IgD does not fix complement and does not cross the placenta.
- Little is known about the function of this class of

COMPLEMENT SYSTEM

- Set of 20 Serum Proteins
- "Complement " refers to the ability of these proteins to complement i.e augment, the effects of other components of the immune system Eg: antibody
- Sources- liver hepatocytes, lympocytes and monocytes


• Functions :

- Lysis of cells bacteria, allografts & tumor cells
- Generation of mediators that participate in inflm & attract neutrophils
- Opsonisation

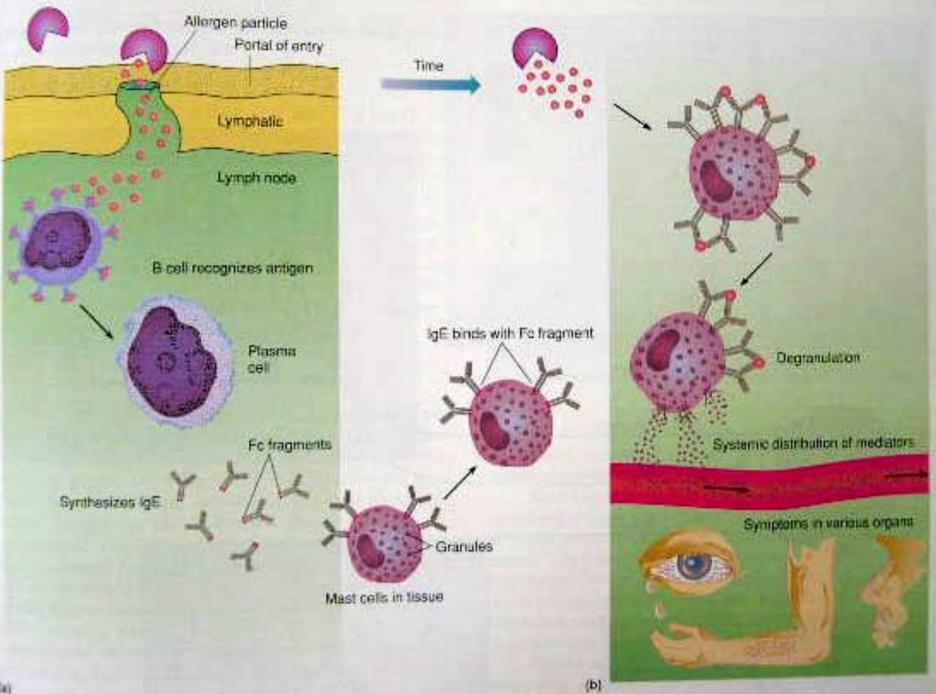
C factors numbered C1-C9 in order of their discovery

Complement components are proenzymes- cleaved to form active enzymes

- Activation by Ag-Ab complexes or by variety of non immunologic molecules eg: endotoxin
- Acts by CLASSICAL OR ALTERNATIVE PATHWAY
- Alternate pathway is more imp the 1st time we get infected

IMMUNE REACTIONS / RESPONSES

- Hypersensitivity: An immune response resulting in exaggerated/ inappropriate reactions harmful to the host
- Type 1 hypersensitivity
 - Anaphylaxis, Atopy
- Type 2 hypersensitivity
 - Autoimmune reactions
- Type 3 hypersensitivity
 - Immune Complexes
- Type 4 hypersensitivity
 - Cell-mediated delayed reactions(DTH)

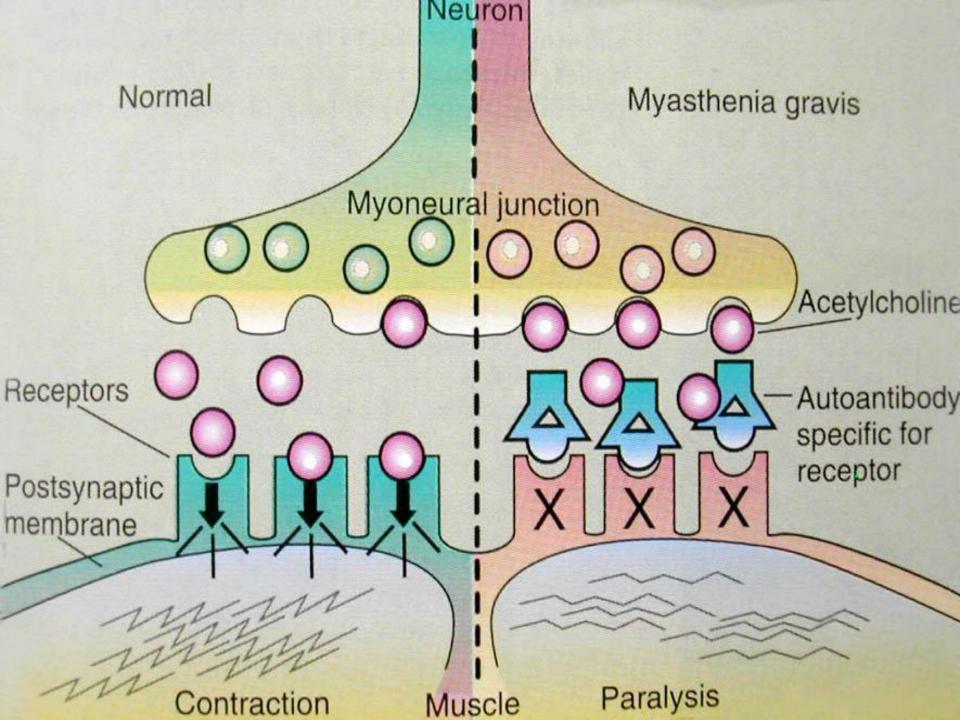

TYPE 1 REACTION (ANAPHYLAXIS)

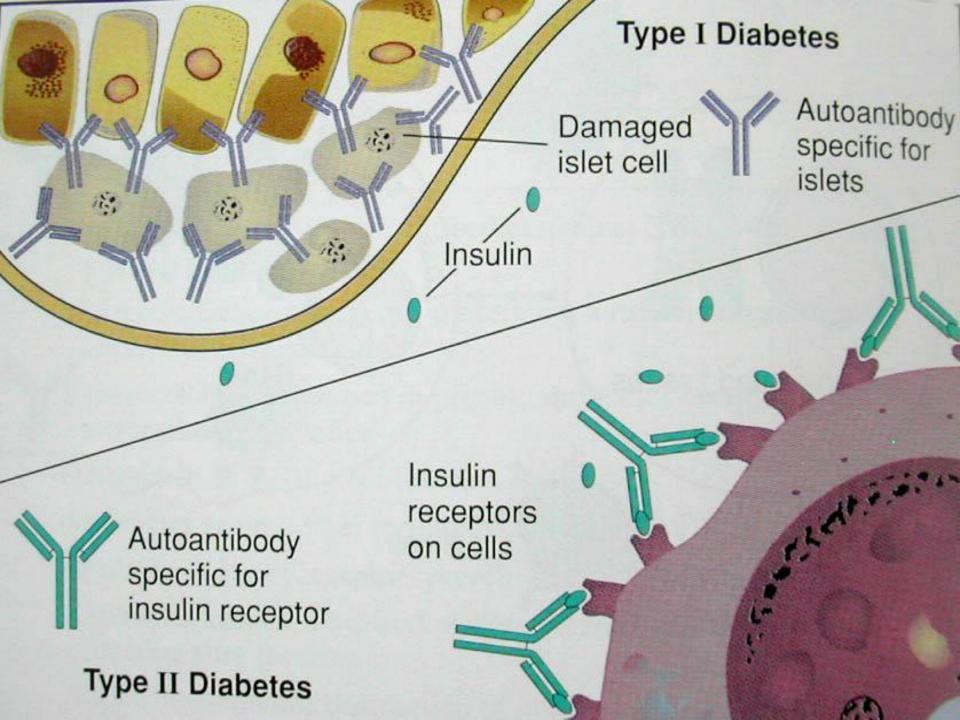
• IgE-mediated allergies

- IgE helps in defending against parasitic infection
- IgE-mediated reactions can occur within minutes.
- The immediate reaction is caused by Histamine, SRSA-A, ECF-A, Serotonin and PG's.

 IgE binds to Fc receptors on Mast cells and thus becomes the cell surface receptor for allergens.

 Cross-linking of this IgE triggers degranulation of Mast cells


TYPE 2 REACTION (AUTOIMMUNE REACTIONS)

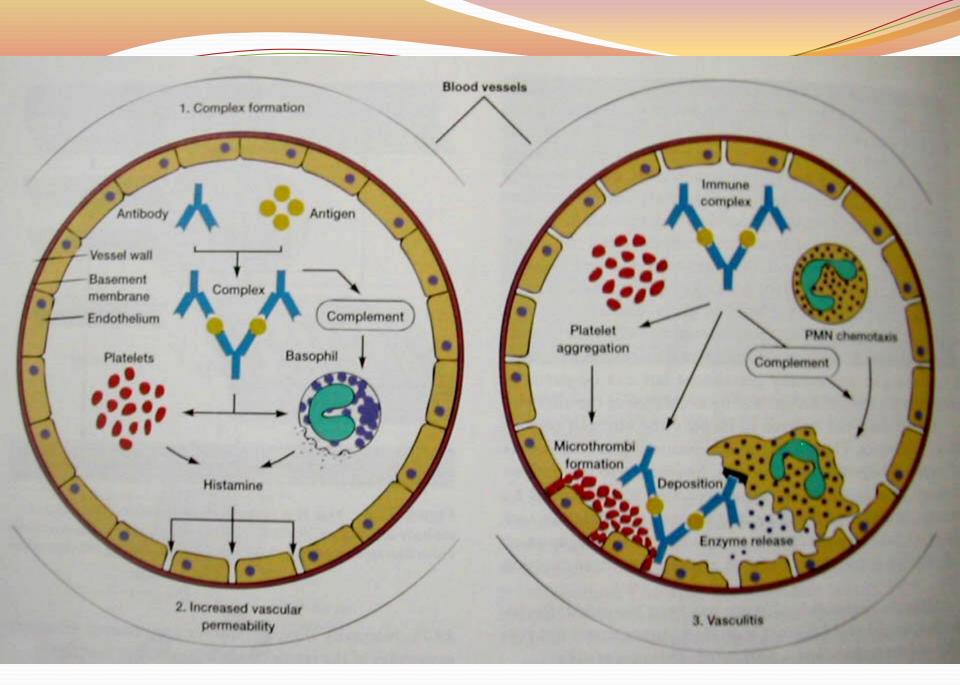

Antibody and complement involved

 Antibody attaches to cell-surface molecules promotes cell lysis either by activating complement or by binding Fc receptors on effector cells.

CLINICAL EXAMPLES

- Myasthenia gravis: Ab against Ach receptors
- Type I Diabetes mellitus
- Autoimmune hemolytic anemia
- Rh Incompatibility Reaction.

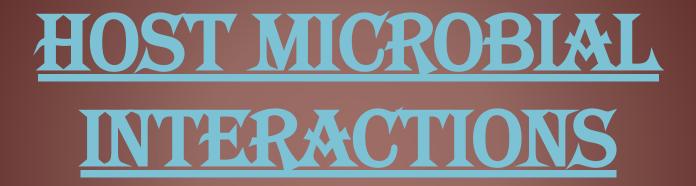
TYPE 3 REACTION (IMMUNE COMPLEX)


- Immune complexes and complement involved
- Excess soluble antigen in blood binds to antibody, gets trapped in capillaries, especially kidneys and initiates the complement cascade.
- Complement cascade initiates inflammatory reactions.

• Responses occur within **3-6 hrs**.

Initiators: insect bites; HBV.

Immune complex diseases
 Arthus reaction - skin reaction


- ; Serum sickness
- ; Glomerulonephritis

TYPE 4 REACTION

(CELL-MEDIATED DELAYED REACTIONS(DTH)

- CD4⁺ T cell-induced delayed-type hypersensitivity (DTH).
- Essential for controlling fungal infections and intracellular bacteria.
- Examples
 - Contact dermatitis
 - Granulomatous diseases
 - Tuberculin test

CONTENTS

MICROBIOLOGIC ASPECTS OF THE MICROBIAL-HOST INTERACTION A) Bacterial Colonization and Survival in the Periodontal Region B) Microbial Mechanisms of Host Tissue Damage

IMMUNOLOGIC ASPECTS OF THE MICROBIAL-HOST INTERACTION

Innate Factors and Initiation of Inflammation Controlling Bacterial Challenge: Primary Role for Neutrophils

CONNECTIVE TISSUE ALTERATIONS: TISSUE DESTRUCTION IN PERIODONTITIS Proteinases Cytokines Prostaglandins

• CONNECTIVE TISSUE ALTERATIONS: HEALING PROCESSES IN PERIODONTITIS

 PATHOBIOLOGY OF LPS MEDIATED BONE DESTRUCTION
 PATHOBIOLOGY OF BONE DESTRUCTION RANK & RANKL Bone Coupling
 CONCLUSION

INTRODUCTION

MICROBIOLOGIC ASPECTS OF HOST-MICROBIAL INTERACTION

- The properties of micro-organisms that enable it to cause disease are referred to as "<u>virulence factors"</u>.
- Bacteria must colonize, then destroy. Periodontitis- invasion of bacteria/ bacterial products —— disease
- Virulence properties are categorized into 2 groups:-
 - 1. Factors that enable bacterial species to colonize & invade host tissues
- 2. Factors that enable bacterial species to cause host tissue damage directly (microbial colonization & proliferation within the tissues) OR indirectly (eliciting the inflammatory response which causes further damage)

MICROBIOLOGIC ASPECTS

ACTINOBACILLUS ACTINOMYCETEMCOMITANS PORPHYROMONAS GINGIVALIS

FUSOBACTERIUM NUCLEATUM

TANNERELLA FORSYTHIA

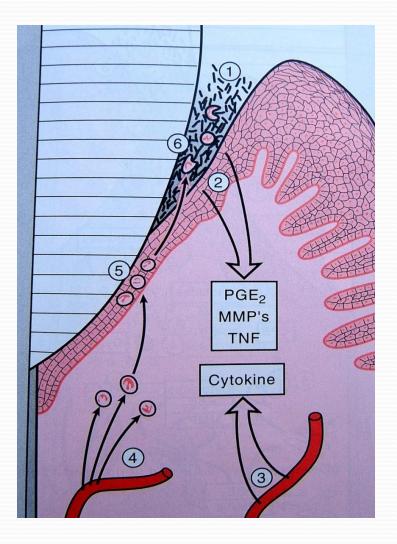
CAMPYLOBACTER RECTUS

PREVOTELLA INTERMEDIA

2. HOST TISSUE INVASION

3.BACTERIAL EVASION OF HOST DEFENCE MECHANISM

A) BACTERIAL ADHERENCE IN PERIODONTAL ENVIRONMENT


- Gingival sulcus & Periodontal pocket- GCF
- Bacterial species that colonize must attach to available surfaces to avoid displacement by the fluid flow.
- Therefore adherance imp virulence factor

Surfaces available for the attachment are
 i) tooth / root
 ii) tissues
 iii) pre-existing plaque mass.

 Bacteria that initially colonize the periodontal environment most likely attach to the pellicle or saliva coated tooth surface.
 Eg: A. viscosus & P.gingivalis – through fimbriae

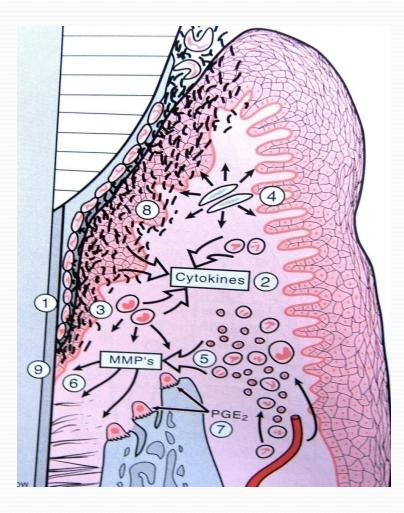
- Bacterial attachment to pre-existing plaque- adherence between different bacterial strains (co-aggregation)
 Eg:- Adherence of A. Viscosus to Streptococcus sanguis.
- Adherence to host tissues- role in colonisazation, critical step in bacterial invasion.
- Ability of *P. Gingivalis* to attach to other bacteria, epithelial cells & connective tissue components like fibrinogen & fibronectin are all likely to be important in the virulence of this micro-organism.

BACTERIAL ACCUMULATION

BACTERIAL ADHESINS & TARGET SUBSTRATES

<u>ATTACHMENT</u> <u>SURFACE</u>	<u>SUBSTRATE</u>	<u>BACTERIA</u>	BACTERIAL ADHESION	<u>SUSTRATE</u> <u>RECEPTOR</u>
1.TOOTH	Saliva coated mineralized surfaces	A.Viscosus	Fimbriae	Saliva treated hydroxyapatite
		A. Viscosus S. Mitis	Fimbriae	Proline- rich proteins
2.TISSUE	Epithelial cells	P. Gingivalis	Fimbriae	
	Fibroblasts PMNs	A. Viscosus	Surface protein Fimbirae	
	CT Components	P. Gingivalis P. intermedia	Membrane protein	
3.PRE-EXISTIN G PLAQUE	S.sanguis	A. Visosus	Fimbriae	Repeating heptasaccharide
	A. naeslundii A. israellii	C. ochraceus	Heat sensitive proteins	Rhammose, fucose,

B) HOST TISSUE INVASION


- Bacteria may enter host tissues through- ulcerations in epithelium of gingival sulcus / pocket. Another means- direct penetration of bacteria into host epithelial or CT cells.
- Tissue invasive organisms- A.a, P.g, F.nucleatum, T.denticola.
- Clinical significance: Ability to invade tissues is strongly associated with disease & is proposed as the key factor that distinguishes pathogenic from non pathogenic species.
- Localization of bacteria to tissues- provides ideal position to effectively deliver toxic molecules & enzymes to host tissue cells. Thus invasion is an imp virulence factor.

• **"Burst of disease activity"** observed in periodontitis may be related to phases of bacterial invasion of tissues.

• Bacteria in the tissues may enable persistence of that species in the periodontal pocket- provide reservoir for recolonization.

• Eg: Mechanical debridement alone is insufficient & that systemic antibiotics in combination with surgical therapy is required to eliminate A. actinomycetemcomitans *from* lesions with Localized Aggressive Periodontitis (LAP)

TISSUE DESTRUCTION

C) BACTERIAL EVASION OF HOST DEFENSE MECHANISM:

- To survive in periodontal environment, bacteria must neutralize or evade the host mechanisms involved in bacterial clearance & killing.
- The ability to adhere allows bacteria to avoid displacement by host secretions, and eukaryotic cell invasion disrupts the natural barriers formed by host tissue cells.
- Bacterial adherence & invasion- mechanisms

Eg: Immunoglobulin function- facilitate phagocytosis by opsonization or may block adherence by binding to bacterial cell surface & restricting access to bacterial adhesions.

So, production of immunoglobulin degrading proteases by specific micro-organisms may counteract these host defences.

BACTERIAL PROPERTIES INVOLVED IN HOST DEFENCE EVASION

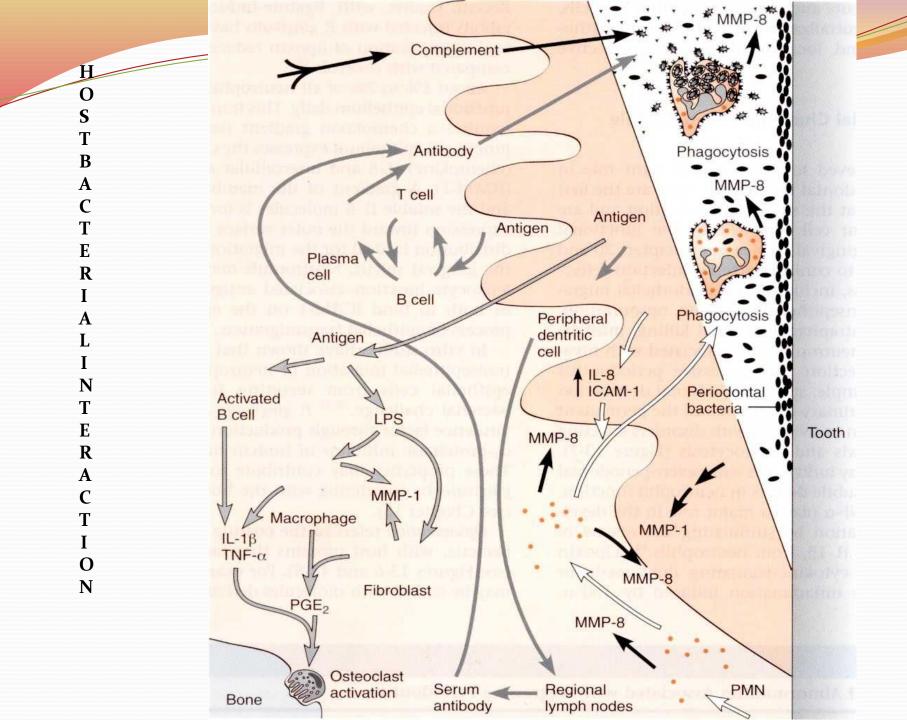
HOST DEFENCE	<u>BACTERIA</u>	BACTERIAL PROPERTY	BIOLOGIC EFFECTS
1. SPECIFIC ANTIBODIES	P. Gingivalis P. Intermedia Capnocytophaga	IgA & IgG DEGRADING PROTEASES	DEGRADATION OF SPECIFIC ANTIBODY
2.PMNs	A.actinomycetemcomitans F. Nucleatum P. Gingivalis T. denticola	LEUKOTOXIN HEAT SENSITIVE SURFACE PROTEIN CAPSULE INHIBITION OF SUPEROXIDE PRODUCTION	INHIBITION OF PMN FUNCTION APOPTOSIS OF PMN FUNCTION INHIBITION OF PHAGOCYTOSIS DEC BACTERIAL KILLING
3.LYMPHOCYTE S	A.actinomycetemcomitans F. Nucleatum T. denticola	LEUKOTOXIN CYTOLETHAL DISTENDING TOXIN SUPRESSION	KILLS MATURE B & T CELLS IMPAIRMENT OF FUNCTION DEC RESPONSE TO Ag & MITOGENS.
4. RELEASE OF IL- 8	P. Gingivalis	INHIBITION OF IL 8 PRODUCTION BY EPITHELIAL CELLS	IMPAIRMENT OF PMN RESPONSE TO BACTERIA

MICROBIAL MECHANISMS OF HOST TISSUE DAMAGE

- Properties of bacteria related to the destruction of host tissues broadly categorized as-
 - 1. Those resulting directly in degradation of host tissues, &
- 2. Those causing the release of biologic mediators from host tissue cells that lead to host tissue destruction.
- Eg: Some bacterial products inhibit growth / alter the metabolism of host cells- ammonia etc
 - Bacterial enzymes
 - Host tissue proteinases- MMPs, elastase

- Disruption of regulatory molecules- IL 1, TNF- bone resorption.

BACTERIAL ENZYMES CAPABLE OF DEGRADING HOST TISSUE


<u>ENZYME</u>	BACTERIA
1. COLLAGENASE	P.GINGIVALIS
2. TRYPSIN LIKE ENZYME	P.GINGIVALIS
	T.DENTICOLA
3. ARYLSULFATASE	C.RECTUS
4. NEURAMINIDASE	P.GINGIVALIS
	T.FORSYTHIA
	P.MELANINGENICA
5. FIBRONECTIN DEGRADING ENZYME	P.GINGIVALIS
	P.INTERMEDIA
6.PHOSPHOLIPASE A	P.MELANINGENICA
	P.INTERMEDIA

IMMUNOLOGIC CONCEPTS OF HOST MICROBIAL INTERACTION

Paradigm for the role of the immune system in periodontal pathogenesis include:

 Innate factors such as complement, resident leukocytes & especially mast cells play an important role in signalling endothelium, thus initiating inflammation

2. Acute inflammatory cells (i.e. Neutrophils) protect local tissues by controlling the periodontal microbiota gingival crevice & junctional epithelium 3. Chronic inflammatory cells, macrophages & lymphocytes protect the entire host from within the subjacent connective tissue & do all that is necessary to prevent local infection from becoming systemic life threatening, including the sacrifice of local tissues.

CONNECTIVE TISSUE ALTERATIONS : TISSUE DESTRUCTION IN PERIODONTITIS

• The fundamental event in transition from gingivitis to periodontitis is loss of attachment & subsequent loss of alveolar bone.

Mediators of host response that contribute to tissue destruction:

 PROTEINASES
 CYTOKINES
 PROSTAGLANDINS

PROTEINASES

- MMPs are primary proteinases- degrade extracellular matrix molecules such as gelatin, collagen & elastin.
- They are secreted in latent form ; they are activated by proteolytic cleavage of portion of enzyme.
- They are inactivated by α macroglobulin, TIMPs found in serum and GCF also by tetracycline.

- Pro inflammatory cytokines such as IL-1, IL-6, TNF have central role in tissue destruction.
- IL in 2 main forms IL-a IL-b which are main constituents of "OSTEOCLAST ACTIVATING FACTORS".
- IL-6 has bone remodeling effect.
- TNF α & β stimulate bone resorption.

PROSTAGEANDINS

- Arachidonic acid metabolites produced by cyclo oxygenase pathway (COX 1 & 2)
- COX-2 is upregulated by IL1 β ,TNF α & bacterial LPS for generating the prostaglandin (PGE2) associated with inflammation.
- Primary cells responsible for PGE2, production in the periodontium are macrophages & fibroblasts.
- PGE2 is increased in periodontal sites demonstrating inflammation and attachment loss. In gingivitis & periodontitis, particularly in active disease.
- PGE2 -Induction of MMPs & osteoclastic bone resorption in periodontitis. Thus diagnostic marker.
- NSAIDS- inhibitor of prostaglandin synthesis.

CONNECTIVE TISSUE ALTERATIONS : HEALING PROCESSES IN PERIODONTITIS

- Periodontal "healing" cycle
- Periodontal repair occurs in overlapping phase of inflammation shut down, angiogenesis & fibrogenesis.

POST INFLAMMATORY HEALING PROCESS:

- First shut down of inflammatory processes
- Then, initiation of post inflammatory healing is orchestrated by leukocytes
- Important anti-inflammatory signals generated by leukocytes are IL-1a(macrophages), TGF-b(mast cells), IL-4, IL-10, IL-11.

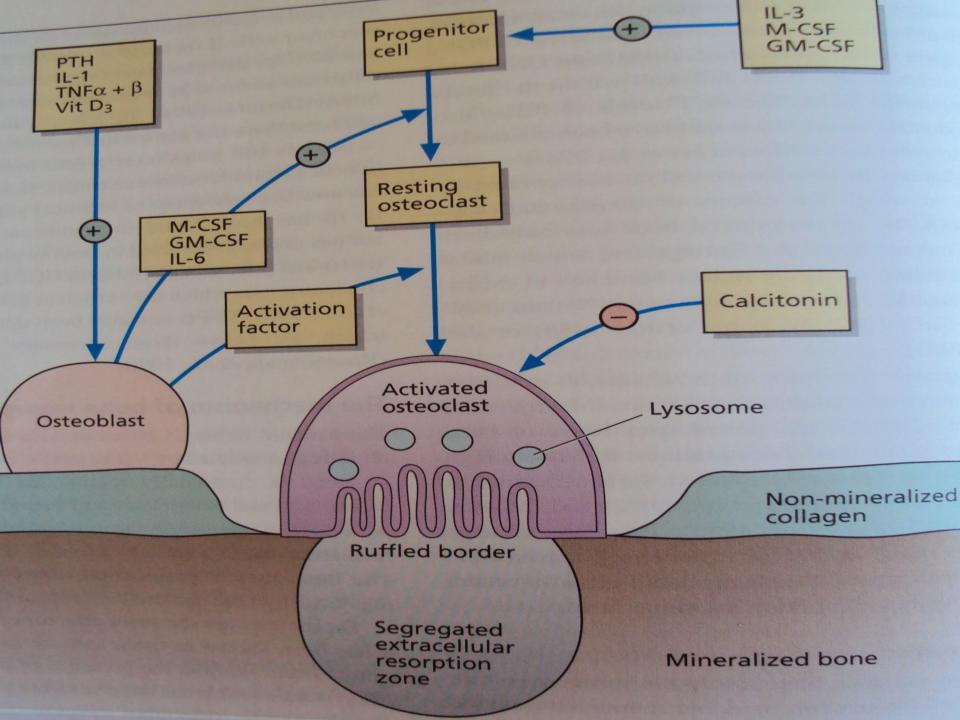
ANGIOGENESIS & FIBROGENESIS

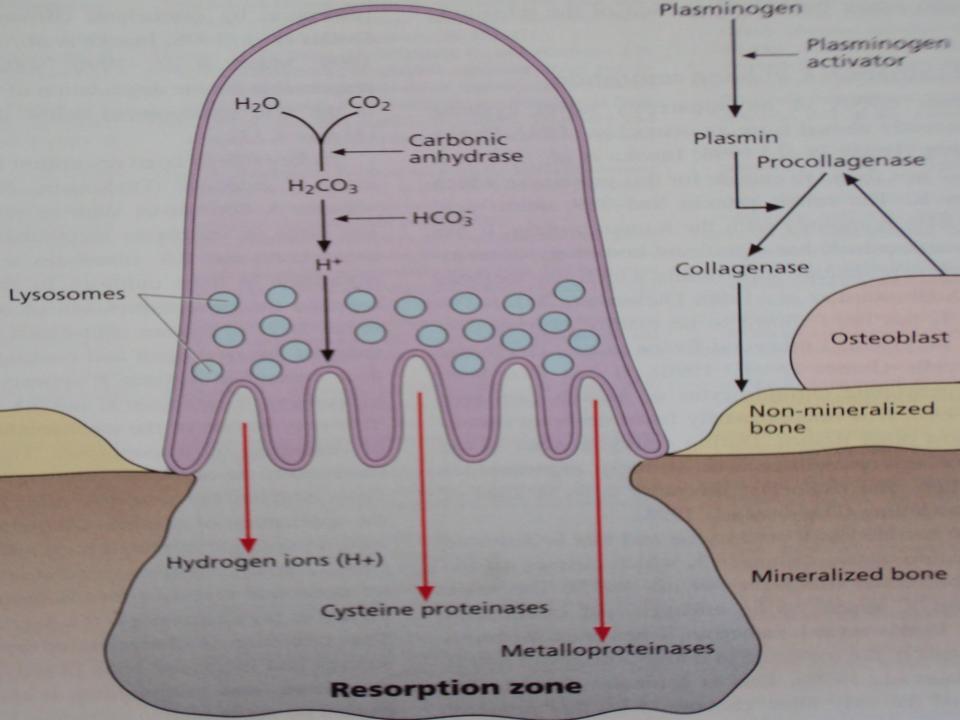
- \Box Cytokines like IL-1 β &TNF- β help induce these processes
- □ IL-1 α & IL-1 β indirectly involved in inducing fibroblast proliferation & collagen synthesis by stimulating production of PGE2 or release of secondary cytokines like PDGF & TGF- β
- PDGF- 5 isoform & produced by numerous cells & tissues including endothelium,vascular smooth muscles & monocytes/ macrophages & induced by anti-inflammatory factors like TGF-β
- \Box TGF- β stimulates osteoblasts & fibroblasts
 - Inhibit osteoclasts, epithelial cells & immune cells
 - Activation requires acidic conditions

Other fibrogenic cytokines-

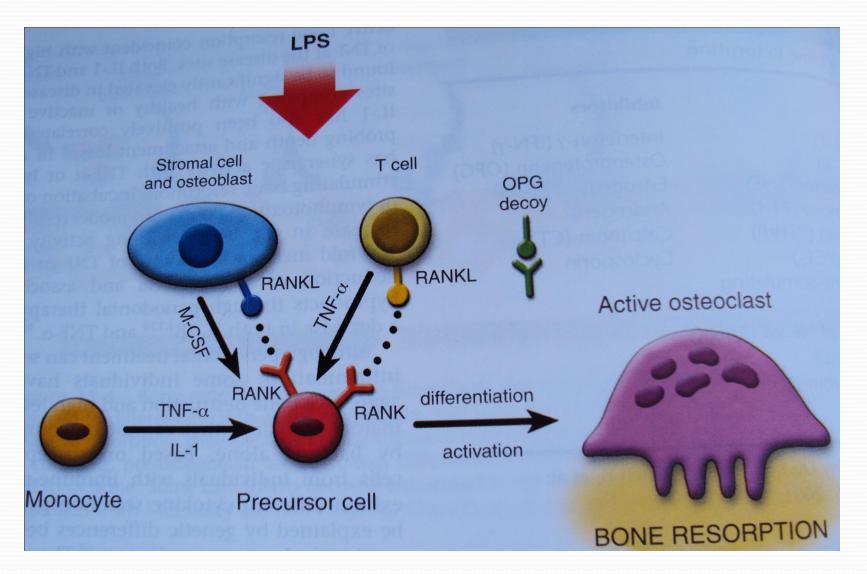
Basic Fibroblast Growth Factor (bFGF) -produced by endothelium & PDL cells) TNF- α (by monocytes) TGF- α (by monocytes)

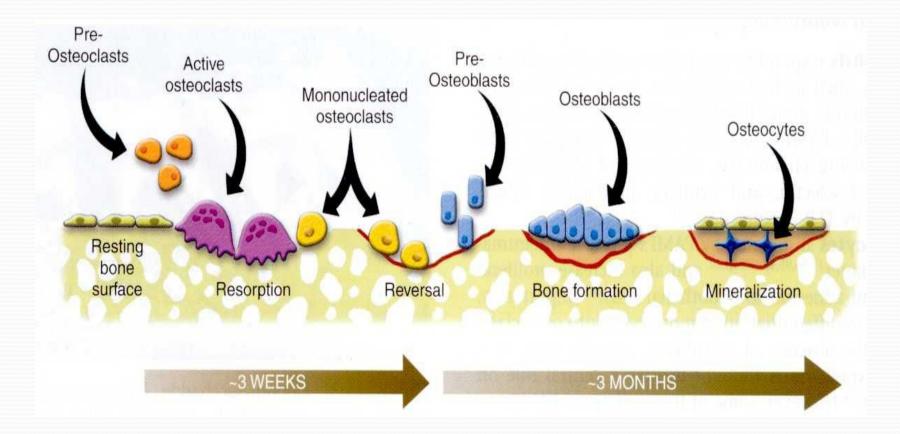
- □ In healing of alveolar bone, regeneration of bone within the defect occur.
- Immune system can induce regenerative bone healing by preventing osteoclast formation & by activating osteoblasts.


IFN-γ □ inhibit osteoclast differentiation produced by natural killer cells, Th-1 T cells & macrophages.


☐ It also inhibits IL-1 & TNF- a induced osteoclast activation.

Insulin like Growth Factor(IGF) & PDGF induce or augment periodontal tissue repair.


IGF-1 \Box induce growth, differentiation & synthesis of collagen



Stimuli Factors Regulating Osteoclast Formation & Function

BONE COUPLING

CONCLUSION

- Pathogenesis of periodontal destruction involves a complex interplay between bacterial pathogens & host tissues. "Not all dental plaque is equal"
- In process of effectively limiting bacterial assault, host defence mechanisms contribute to the destruction of tissues locally
- Not all strains of a specific microbial species are equal in their capacity to cause disease, & not all hosts are equal in their susceptibility to disease

THANK YOU

QUESTIONS

• LONG ESSAY /SHORT ESSAY:

- 1. Immunity & inflammation
- 2. Microbial interactions with the host in periodontal disease
- 3. Molecular biology of host-microbe interaction in periodontal disease

• <u>SHORT ESSAYS:</u>

- 1. Cytokines?
- 2. Mast cells in periodontal disease?
- 3. Role of macrophages in periodontal disease?

• <u>SHORT NOTES:</u>

- 1. Type I hypersensitivity?
- 2. Cytokines?
- 3. Neutrophils?
- 4. Lymphocytes?
- 5. Prostaglandins?
- 6. Lyphokines?